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The question of the radiation of an elastic wave in a camouflet explosion was considered 
in several papers [1-3]. Most detailed computations are presented in [3], where the problem 
of expansion of the gas cavity in an elastic--plastic dilating medium was investigated. It 
was assumed in [3] that a constant irreversible compression of the medium occurs on the de- 
struction wave front. Such an approximation does not permit taking account of the reverse 
influence of the emitted elastic wave on the destruction wave parameters in the case of not 
too high compressions. 

The parameters of an elastic wave emitted in a camouflet explosion are computed in this 
paper for the case when substance compression on the destruction wave front is variable. 

The source of medium motion is a gas in a cavity whose radius is ao at the initial in- 
stant. The gas pressure at this time is Po. For t > 0 a spherical shock starts to be propa- 
gated from the cavity. Initially, the velocity of shock propagation exceeds the velocity 
of the longitudinal waves in the medium. Instantaneous compression of the medium occurs on 
the wave front because of selection. We will characterize the degree of compression of the 
medium on the front by the compression ~(R) = 1 -- po/p(R), where R is the radius of the shock 
front, Po is the initial density of the medium, and p(R) is the density achievable at the 
front. It is assumed that destruction of the medium occurs right after the compression. 
Plastic flow of the medium occurs behind the shock front that coincides with the destruction 
wave front, and this flow is accompanied by a change in density because of the effect of 
dilatancy [3-5]. Compressibility of the pieces of the shattered medium is not taken into 
account here. Let us note that such a pattern for the description of cavity expansion and 
shock front motion can be utilized just while the front velocity exceeds the velocity of 
longitudinal wave propagation. In this stage the motion of the medium is described by the 
motion and continuity equations and by the equation of the dilatation change in volume 
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where u is the mass flow rate of the medium; p, density; o r and ~, radial and azimuthal com- 
ponents of the stress tensor; and A, rate of dilatancy which we shall consider constant. It 
is assumed that the Prandtl plasticity condition 

~ - - %  = k + m ( ~  § 2%), 

is satisfied behind the wave front, where k and m are the adhesion and friction coefficients, 
respectively. The conditions of mass and momentum conservation 

~ ( R )  = - p o ~ ( n ) R  ~ - o*, 

are satisfied behind the wave front (the destruction wave), where R is the velocity of the 
destruction wave front and ~* is the crushing strength. 

The condition for adiabatic expansion of explosive gases yields the boundary condition 

on the cavity wall 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 47-52, November-December, 1983. Original article submitted October ii, 1982. 

0021-8944/83/2406-0807507.50 �9 1984 Plenum Publishing Corporation 807 



16 

iO0 200 'v 

I j  2 

r -3 

~0 -4 -_tTL-_- 
o I00 '00 

Fig. i Fig. 2 

~ ( ~ )  = -po (ao /~ )~ ,  

where a is the running radius of the cavity and y is the adiabatic index. 

We take the expression 

~(R) = ~o(ao/R) ~ (~ > o). 

for the dependence s(R). Furthermore, the camouflet equation, similar to the equation in 
[5], can be obtained by a standard method, and appears as follows in dimensionless form: 

dy "o t 0!f 
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Here r(ro) is the dependence of 
mined from the equations 
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= ( 2 - - A ) / ( I  + A),  x = a / a o ,  Z = R / a o ,  E~ = a l p , .  

the Eulerian on the Lagrangian coordinate, which is deter- 

The r and ro in (2) are dimensionless and expressed in units of ao, while p is expressed 
in units of Po, and the dot denotes differentiation with respect to the dimensionless time 

= t/po/po/ao. The initial condition of (2) has the form y(x = i) = co. Solving (2), a 
complete description can be obtained of the motion of the cavity, the destruction wave front, 
the medium between the cavity and the destruction wave front within the framework of the 
model formulated. This solution will be valid until the front velocity exceeds the velocity of longi- 
tudinal wave propagation in this medium. The quantity ~ diminishes with time and at a certain time 
t = t* the destructionwave front velocity ~ is comDared to the velocity of longitudinal wave propaga- 
tion. At this time an elastic wave that is propagated at the velocity c I (c/ is the longitudinal 
speed of sound in the medium) starts to be emitted from the destruction wave front. The 
physical quantities in the elastic domain are expressed in terms of the potential of elastic 

displacements f(A), A = Clt/ao -- r/ao: 

G~ ~ ) = - p , , d  + 2 ~  + 7  -ph,  

or~ C) 
= - p o d  ~ ~ - t - v \ 7  + - p~' 

v ( e = c l  + , w ( e ) = a o  + - 7  , 9 ( e ) = p o  1 .+  , 
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where Ph is the background pressure, w (e) is the displacement, v (e) is the mass flow rate of 
the medium, and ~ is the Poisson ratio; the superscript (e) means that the corresponding 

quantities are taken in the elastic zone. 

Taking account of the elastic wave, the conditions on the destruction wave front become 

u ( I 0  = h~(f~) F v~e~ (R)[:t - ~(f~)1, 

o,, (R) = ~rl e) (R) - -  p(e) (R) ~ ( R ) [ h  -- v (e~ (R)I. 

As before, we take the condition of destruction by crushing on the destruction wave front: 

al e) (R) := - -  fff,'. (3)  

which results in the equation for f(A): 

") o*- -ph  2 ~ ~ - J -  R: ~ j .  (4)  
R P0C~ 

We now t u r n  t o  L a g r a n g e  v a r i a b l e s  i n  (1)  w h i c h  d e s c r i b e s  t h e  p l a s t i c  f l o w  o f  t h e  d e -  
s t r o y e d  medium. The third equation of the system (i) yields 

u, = c( t) / r  ~, n = (2 - A)/ ( t  + A). 

The boundary conditions for r = R yield for c(t) 

e == R ~ [1~, -~- (1 - ~ )L~(~ ' ) (R)I .  (5) 

Then, substituting the expression for u into the first equation in the system (i), we obtain 
the camouflet equation valid for t > t* after appropriate manipulations: 

AZ -. BZ ~ § CZ = D, (6)  

A : ~ ( z ) r ,  Oo = V~p-~,Oo,  

B = ~ + i-~j " -- nZ'e"X + P----7--- e, 

C =  z-f - ( t - - e )  /y)% /Y)% Oeoz + 3 ( l - e )  @ y - -  2e (l - -  e) nZ" ,.(e)eo X--2~ ,,(e)~ Z~ ,, 
0 fl 

D - - -  z" :~,,~,o z ' ' ~ ' ( ~ )  ~,,, ~oZ-? 

The joint propagation of the destruction and the elastic wave is described completely 
by (4) and (6). Values of the appropriate quantities at t = t* are used as initial values 
for the solution of (4) and (6). Let us note that for constant compression on the destr=e- 
tion wave front s(R) = go = const, neglecting the second term in the square brackets in (5) 
we obtain the equation presented in [3]. This latter neglect is valid only under the con- 
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dition Rc >> v(e), which is not satisfied if the quantity s is sufficiently small. The small- 
ness of r means that the condition r >> o*/pc~ for which the equations presented in [3] are 

valid is not satisfied. 

Therefore, the equations obtained above describe the development of a camouflet explosion 
and afford an opportunity to determine the characteristics of the elastic wave emitted from 
the destruction wave front. Equations (2), (4), and (6) can be solved only by using numerical 
methods. We turn to the results of numerical computations. 

Several modifications were computed during solution of the problem. In all the modifi- 
cations the computation was for po = 7"10 ~ MPa, ao = 3 m, y = 1.4, k = --i MPa, m = 0.i, A = 
0.07, o* = 50 MPa, ~ = 0.33, c I = 5000 m/sec, and po = 2.8 g/cm 3. 

Graphs of the time dependence of the dimensionless quantity Eel are shown in Fig. I, 

where 

Here Eel determines the quantity of energy emitted from the destruction wave front. This 
energy later goes partially into the formation of residual elastic displacements of the me- 
dium, i.e., goes over into energy of residual elastic strain. The other part goes over into 
the seismic wave energy and goes to infinity. The initial compression for curves 1 and 2 is 
so = 0.05. Curve 1 corresponds to constant compression at the destruction wave front (% = 
0), and 2 to variable compression (% = I). It should be taken into account that real values 
of Eel are an order of magnitude higher for curve 2 than is presented in Fig. i. It is seen 
from Fig. i that in the case of variable compression the rate of energy emission from the 
destruction wave front into the elastic domain exceeds by more than an order the rate of 
emission for the case % = 0. Consequently, the energy emitted from the front into the elas- 
tic domain for % = 1 also substantially exceeds the analogous quantity for % = 0. This re- 
sult is related to the fact that energy dissipation for k = i, which is related to closing 
of the pores on the destruction wave front, diminishes as compared to the case % = 0. This 
results in an increase in the size of the destruction zone (at identical times), and there- 
fore, to an increase in Eel. For k = 1 Eel is 26% of the explosion energy while for k = 0 
this quantity is 2.5%. The increase in Eel in the case of variable compression results in a 

substantial increase in the elastic strains. 

The spatial profile of the deformations in the elastic wave is represented in Fig. 2. 
Curve i -- k = 0, r = 0.05, curve 2 -- % = i, so = 0.05. The curves are presented at times 

corresponding to the halt of the destruction wave front. 

The question of the magnitude of the elastic energy emitted at infinity is of primary 
value for the seismology ~f an underground explosion. This energy was computed analogously 
to [3]. A graph of the dependence of the energy emitted at infinity on the compression in- 

dex % (Eo is the explosion energy) is given in Fig. 3. As k increases from 0 to i the quan- 
tity e grows by two orders. Such a growth of the emitted elastic energy is confirmed by 

the following estimate. The elastic energy is proportional to 4~R2~r(e)(R)w(e)(R) ~ R=~*R~*/ 
E ~ R 3, where E is Young's modulus, and R is the characteristic radius of the elastic wave 
emitter. Substitution of the elastic radii from the different computation modifications 
yields the same order of energy growth with the rise in %. Therefore, the results of the 
computation show that taking account of the variability of the compression on the destruction 
wave front results in a substantial increase in both the total elastic energy, and the energy 

that goes off to infinity. 

The dependence of the quantity d = e(% = l)/e(% = 0), i.e., the ratio of the energies 
emitted at infinity for % = i to the same energy computed for % = 0 on the initial compression 
is represented in Fig. 4. It is seen that for a medium with ao of the order of 10% (but so 
agrees with the initial porosity of the medium) the effect of an increase in e is most sub- 

stantial. 

The consideration presented in this paper shows that taking account of the variability 
of the compression of the medium on the destruction wave front yields a substantial change 

in the elastic signal characteristics of a camouflet explosion. 

The authors are grateful to O~ V; Nagornov for useful remarks and discussion. 
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BLAST WAVES IN FROZEN SOILS 

G. M. Lyakhov and G. B. Frash UDC 624.131+551.345 

We present results of experimental studies of spherical blast waves in seasonally frozen 
soils with different physical and mechanical properties at different temperatures. A com- 
parison with results in [i, 2] shows that the wave parameters depend strongly on the charac- 
teristics of the soil in the initial unfrozen state and on the temperature. When the tem- 
perature falls, the maximum stresses and the wave velocity increase, but the duration of the 
wave decreases. The general character of the extinction and flattening of waves in frozen 
soils, just as in unfrozen soils, is typical of media having plastic properties and bulk 
viscosity [2]. 

i. Characteristics of Soils and Test Conditions. Frozen soils are four-component media 
containing solid mineral particles forming the skeleton, unfrozen water, ice, and air. We 
denote the volume fractions of the components as follows: air (free interstitial space), 
~; water, ~2; mineral particles, ~3; ice, ~ (~ is also called the volumetric iciness); 
Pz, P2, P3, P~ are the densities of the corresponding components. These quantities are re- 
lated to the density of the soil Po, the mass (weight) moisture content w, and the gravi- 
metric iciness i by the equations 

~ P J ( ~ P ~  -[- ~ P 4 )  : i, (a2p~ § a4p4)/a~p3 : :  ~v. ( 1 . 1 )  

When the temperature falls the volume contents of the components change. This occurs 
as a result of possible migration of water from the lower layers of the soil to the frost 
front, and also as a result of the gradual freezing of the interstitial water [3, 4]. There- 
fore, the values of the quantities listed above must correspond to the temperature at which 
the experiments are performed and also to the initial (atmospheric) pressure. 

The experiments were performed in sandy and loamy soils of natural structure under con- 
ditions of seasonal freezing to a depth of 0.45-0.5 m. The granulometric composition of the 
sandy soil is shown in Table i. 

At a soil temperature t =--0.2~ the average values of the soil characteristics were: 
Po = 1840 kg/m 3, P3 = 2660 kg/m 3, w = 0.27, i = 0.73. 

The granulometric composition of the loamy soil is shown in Table 2. 

In granulometric composition the soil falls into the category of loam, close to sandy 
loam. At temperatures --0.2~C and--0.4~ the average values of the characteristics of the 
components were: Po = 1920 kg/m3; P3 = 2680 kg/m3; w = 0.22 in both cases; and i = 0.5 and 
0.75, respectively. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, 
pp. 52-57, November-December, 1983. Original article submitted October 26, 1982. 

0021-8944/83/2406-0811507.50 �9 1984 Plenum Publishing Corporation 811 


